Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.706
Filter
1.
J Med Chem ; 67(8): 6268-6291, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38619191

ABSTRACT

Overactivation of cyclic GMP-AMP synthase (cGAS) is implicated in the occurrence of many inflammatory and autoimmune diseases, and inhibition of cGAS with a specific inhibitor has been proposed as a potential therapeutic strategy. However, only a few low-potency cGAS inhibitors have been reported, and few are suitable for clinical investigation. As a continuation of our structural optimization on the reported cGAS inhibitor 6 (G140), we developed a series of spiro[carbazole-3,3'-pyrrolidine] derivatives bearing a unique 2-azaspiro[4.5]decane structural motif, among which compound 30d-S was identified with high cellular effects against cGAS. This compound showed improved plasma exposure, lower clearance, and an oral bioavailability of 35% in rats. Moreover, in the LPS-induced acute lung injury (ALI) mice model, oral administration of compound 30d-S at 30 mg/kg markedly reduced lung inflammation and alleviated histopathological changes. These results confirm that 30d-S is a new efficacious cGAS inhibitor and is worthy of further investigation.


Subject(s)
Acute Lung Injury , Carbazoles , Drug Design , Nucleotidyltransferases , Pyrrolidines , Acute Lung Injury/drug therapy , Animals , Mice , Male , Humans , Rats , Carbazoles/chemical synthesis , Carbazoles/pharmacology , Carbazoles/chemistry , Carbazoles/therapeutic use , Carbazoles/pharmacokinetics , Pyrrolidines/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/therapeutic use , Pyrrolidines/pharmacokinetics , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/metabolism , Lipopolysaccharides , Rats, Sprague-Dawley , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/therapeutic use , Spiro Compounds/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/chemistry , Structure-Activity Relationship , Molecular Docking Simulation
2.
Adv Pharmacol ; 99: 83-124, 2024.
Article in English | MEDLINE | ID: mdl-38467490

ABSTRACT

Synthetic cathinone derivatives comprise a family of psychoactive compounds structurally related to amphetamine. Over the last decade, clandestine chemists have synthesized a consistent stream of innovative cathinone derivatives to outpace governmental regulatory restrictions. Many of these unregulated substances are produced and distributed as designer drugs. Two of the principal chemical scaffolds exploited to expand the synthetic cathinone family are methcathinone and α-pyrrolidinopentiophenone (or α-pyrrolidinovalerophenone, α-PVP). These compounds' main physiological targets are monoamine transporters, where they promote addiction by potentiating dopaminergic neurotransmission. This chapter describes techniques used to study the pharmacodynamic properties of cathinones at monoamine transporters in vitro. Biochemical techniques described include uptake inhibition and release assays in rat brain synaptosomes and in mammalian expression systems. Electrophysiological techniques include current measurements using the voltage clamp technique. We describe a Ca2+ mobilization assay wherein voltage-gated Ca2+ channels function as reporters to study the action of synthetic cathinones at monoamine transporters. We discuss results from systematic structure-activity relationship studies on simple and complex cathinones at monoamine transporters with an emphasis on identifying structural moieties that modulate potency and selectivity at these transporters. Moreover, different profiles of selectivity at monoamine transporters directly predict compounds associated with behavioral and subjective effects within animals and humans. In conclusion, clarification of the structural aspects of compounds which modulate potency and selectivity at monoamine transporters is critical to identify and predict potential addictive drugs. This knowledge may allow prompt allocation of resources toward drugs that represent the greatest threats after drugs are identified by forensic laboratories.


Subject(s)
Central Nervous System Stimulants , Synthetic Cathinone , Rats , Animals , Humans , Amphetamines , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Mammals/metabolism
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338825

ABSTRACT

Highly resistant to reduction nitroxides open new opportunities for structural studies of biological macromolecules in their native environment inside living cells and for functional imaging of pH and thiols, enzymatic activity and redox status in living animals. 3,4-Disubstituted nitroxides of 2,2,5,5-tetraethylpyrrolidine and pyrroline series with a functional group for binding to biomolecules and a polar moiety for higher solubility in water and for more rigid attachment via additional coordination to polar sites were designed and synthesized. The EPR spectra, lipophilicities, kinetics of the reduction in ascorbate-containing systems and the decay rates in liver homogenates were measured. The EPR spectra of all 3,4-disubstituted pyrrolidine nitroxides showed additional large splitting on methylene hydrogens of the ethyl groups, while the spectra of similar pyrroline nitroxides were represented with a simple triplet with narrow lines and hyperfine structure of the nitrogen manifolds resolved in oxygen-free conditions. Both pyrrolidine and pyrroline nitroxides demonstrated low rates of reduction with ascorbate, pyrrolidines being a bit more stable than similar pyrrolines. The decay of positively charged nitroxides in the rat liver homogenate was faster than that of neutral and negatively charged radicals, with lipophilicity, rate of reduction with ascorbate and the ring type playing minor role. The EPR spectra of N,N-dimethyl-3,4-bis-(aminomethyl)-2,2,5,5-tetraethylpyrrolidine-1-oxyl showed dependence on pH with pKa = 3, ΔaN = 0.055 mT and ΔaH = 0.075 mT.


Subject(s)
Nitrogen Oxides , Pyrroles , Pyrrolidines , Rats , Animals , Spin Labels , Nitrogen Oxides/chemistry , Oxidation-Reduction , Pyrrolidines/chemistry , Ascorbic Acid , Electron Spin Resonance Spectroscopy , Cyclic N-Oxides/chemistry
4.
Org Biomol Chem ; 22(5): 1027-1033, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38193622

ABSTRACT

γ-Aminobutyric acid (GABA) and GABA derivatives have attracted increased attention over the years in the fields of medicinal chemistry and chemical biology due to their interesting biological properties and synthetic relevance. Here, we report a short synthetic route to γ-(het)aryl- and γ-alkenyl-γ-aminobutyric acids, including the antiepileptic drug vigabatrin, from readily available donor-acceptor cyclopropanes and ammonia or methylamine. This protocol includes a facile synthesis of 2-oxopyrrolidine-3-carboxamides and their acid hydrolysis to γ-aryl- or γ-alkenyl-substituted GABAs, which can serve as perspective building blocks for the synthesis of various GABA-based N-heterocycles and bioactive compounds.


Subject(s)
Vigabatrin , gamma-Aminobutyric Acid , Anticonvulsants/pharmacology , Vigabatrin/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology
5.
J Mol Model ; 30(1): 23, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38177613

ABSTRACT

CONTEXT: The regioselectivity and diastereoselectivity of the 1,3-dipolar cycloaddition reaction between azomethine ylides and acrolein were investigated. The DFT studies revealed that the favored pathway leads to the formation of cis-cycloadduct pyrrolidine and these computational findings align with experimental observations. The cis-cycloadduct pyrrolidine product serves as an advanced intermediate in the synthesis of a hepatitis C virus inhibitor. For this, the antiviral activity of cis-cycloadduct pyrrolidine against cyclophilin A, the co-factor responsible for hepatitis C virus, was also evaluated through molecular docking simulations which revealed intriguing interactions and a high C-score, which were further confirmed by molecular dynamics simulations, demonstrating stability over a 100-ns simulation period. Furthermore, the cis-cycloadduct pyrrolidine exhibits favorable drug-like properties and a better ADMET profile compared to hepatitis C virus inhibitor. METHODS: Chemical reactivity studies were performed using DFT method by the functional B3LYP at 6-31G (d, p) computational level by GAUSSIAN 16 program. Frontal molecular orbitals theory used to investigate HOMO/LUMO interactions between azomethine ylides and acrolein. Findings of this approach were confirmed by global reactivity indices and electron displacement was investigated based on Fukui functions. Furthermore, the activation energies were determined after frequency calculations using TS Berny algorithm and transition states were confirmed by the presence of a single imaginary frequency. Moreover, antiviral activity of cis-cycloadduct was explored through molecular docking using Surflex-Dock suite SYBYL X 2.0, and molecular dynamics simulation using GROMACS program. Finally, drug-like properties were investigated with SwissADME and ADMETlab 2.0.


Subject(s)
Acrolein , Hepacivirus , Molecular Docking Simulation , Acrolein/pharmacology , Cycloaddition Reaction , Pyrrolidines/chemistry , Antiviral Agents/pharmacology
6.
ChemMedChem ; 18(23): e202300457, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37872124

ABSTRACT

(R)-PFI-2 is a histone substrate-competitive inhibitor of the human histone lysine monomethyltransferase SETD7. Aimed at developing potent inhibitors of SETD7 that can also act as small molecule substrates, we replaced the pyrrolidine ring of (R)-PFI-2 with several side chains bearing nucleophilic functional groups. We explored the inhibitory activity of 20 novel (R)-PFI-2 analogues, and found that the most potent analogue has a hydroxyethyl side chain (7). SETD7's ability to catalyse methylation of (R)-PFI-2-based small molecules was evaluated by mass spectrometric assays, and we observed efficient methylation of analogues bearing lysine mimicking nucleophilic amines. The optimal side chain was found to be an aminoethyl group (1), which was surprisingly also dimethylated by SETD7. The work demonstrates that small molecules can act as both substrates and inhibitors of biomedically important SETD7.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Humans , Lysine , Pyrrolidines/pharmacology , Pyrrolidines/chemistry
7.
J Med Chem ; 66(14): 9866-9880, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37428137

ABSTRACT

Molecular complexity plays an increasingly important role in the modern pharmaceutical industry. Setting up multiple stereogenic centers in privileged substructures may give rise to improved or even unprecedented bioactivities; however, this area remains largely unexplored due to the tremendous synthetic challenges. Herein, we report a series of multisubstituted pyrrolidines with four continuous stereogenic centers, including up to two aza-QSCs (quaternary stereogenic centers). Systematic evaluations, including phenotypic screening, molecular docking, molecular dynamics, bioinformatics, and bioactivity analysis, have been performed to screen entities with pharmacological properties of interest. Among them, compound 4m with two QSCs was identified to be a potent antiproliferation agent through disturbing mitosis exit, and the presence of QSCs was found to be crucial for anticancer efficacy. This work illustrates that the introduction of QSCs in privileged scaffolds not only helps to expand the unpatented chemical space but also provides new opportunities for the discovery of novel therapeutic agents.


Subject(s)
Pyrrolidines , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Stereoisomerism , Molecular Docking Simulation
8.
ACS Chem Neurosci ; 14(14): 2527-2536, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37406364

ABSTRACT

α-Pyrrolidinohexiophenone (α-PHP) is the one-carbon unit α-extended homolog of the better-known and widely abused synthetic cathinone central stimulant α-PVP ("flakka"); both are now U.S. Schedule I controlled substances. Structurally, α-PVP and α-PHP possess a common terminal N-pyrrolidine moiety and differ only with respect to the length of their α-alkyl chain. Using a synaptosomal assay, we previously reported that α-PHP is at least as potent as α-PVP as a dopamine transporter (DAT) reuptake inhibitor. A systematic structure-activity study of synthetic cathinones (e.g., α-PHP) as DAT reuptake inhibitors (i.e., transport blockers), a mechanism thought responsible for their abuse liability, has yet to be conducted. Here, we examined a series of 4-substituted α-PHP analogues and found that, with one exception, all behaved as relatively (28- to >300-fold) selective DAT versus serotonin transporter (SERT) reuptake inhibitors with DAT inhibition potencies of most falling within a very narrow (i.e., <3-fold) range. The 4-CF3 analogue of α-PHP was a confirmed "outlier" in that it was at least 80-fold less potent than the other analogues and displayed reduced (i.e., no) DAT vs SERT selectivity. Consideration of various physicochemical properties of the CF3 group, relative to that of the other substituents involved here, provided relatively little insight. Unlike with DAT-releasing agents, as previously reported by us, a QSAR study was precluded because of the limited range of empirical results (with the exception of the 4-CF3 analogue) for DAT reuptake inhibition.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Synthetic Cathinone , Dopamine Plasma Membrane Transport Proteins/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Dopamine Uptake Inhibitors/pharmacology , Dopamine Uptake Inhibitors/chemistry , Structure-Activity Relationship , Serotonin Plasma Membrane Transport Proteins , Selective Serotonin Reuptake Inhibitors
9.
Eur J Pharm Biopharm ; 188: 137-146, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37196874

ABSTRACT

In this study, high energy ball milling and nano spray drying were used to prepare amorphous solid dispersions of bosentan in copovidone for the first time. In particular, the impact of this polymer on the bosentan amorphization kinetics was investigated. Copovidone was shown to facilitate the amorphization of bosentan upon ball milling. As a result, bosentan was dispersed in copovidone at the molecular level, forming amorphous solid dispersions, regardless of the ratio of the compounds. The similarity between the values of the adjustment parameter that describes the goodness of fit of the Gordon-Taylor equation to the experimental data (K = 1.16) and that theoretically calculated for an ideal mixture (K = 1.13) supported these findings. The kind of coprocessing method determined the powder microstructure and the release rate. The opportunity to prepare submicrometer-sized spherical particles using nano spray drying was an important advantage of this technology. Both coprocessing methods allowed the formation of long-lasting supersaturated bosentan solutions in the gastric environment with maximum concentrations reached ranging from four (11.20 µg/mL) to more than ten times higher (31.17 µg/mL) than those recorded when the drug was vitrified alone (2.76 µg/mL). Moreover, this supersaturation lasted for a period of time at least twice as long as that of the amorphous bosentan processed without copovidone (15 min vs. 30-60 min). Finally, these binary amorphous solid dispersions were XRD-amorphous for a year of storage under ambient conditions.


Subject(s)
Pyrrolidines , Drug Compounding/methods , Bosentan , Solubility , Pyrrolidines/chemistry
10.
Bioorg Med Chem ; 85: 117273, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37030194

ABSTRACT

GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.


Subject(s)
Blood Glucose , Hyperglycemia , Rats , Animals , Receptors, G-Protein-Coupled , Glucagon-Like Peptide 1 , Hypoglycemic Agents/pharmacology , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Insulin
11.
Molecules ; 28(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903367

ABSTRACT

Synthetic cathinones, such as 3,4-methylenedioxypyrovalerone (MDPV), are widely abused due to their psychostimulant effects. As they are chiral molecules, studies of their stereochemical stability (racemization can occur in certain temperatures and acidic/basic environments) and of their biological and/or toxicity effects (enantiomers might display different properties) are of great relevance. In this study, the liquid chromatography (LC) semi-preparative enantioresolution of MDPV was optimized to collect both enantiomers with high recovery rates and enantiomeric ratio (e.r.) values. The absolute configuration of the MDPV enantiomers was determined by electronic circular dichroism (ECD) with the aid of theoretical calculations. The first eluted enantiomer was identified as S-(-)-MDPV and the second eluted enantiomer was identified as R-(+)-MDPV. A racemization study was performed by LC-UV, showing enantiomers' stability up to 48 h at room temperature and 24 h at 37 °C. Racemization was only affected by higher temperatures. The potential enantioselectivity of MDPV in cytotoxicity and in the expression of neuroplasticity-involved proteins-brain-derived neurotrophic factor (BDNF) and cyclin-dependent kinase 5 (Cdk5)-was also evaluated using SH-SY5Y neuroblastoma cells. No enantioselectivity was observed.


Subject(s)
Central Nervous System Stimulants , Neuroblastoma , Humans , Synthetic Cathinone , Stereoisomerism , Chromatography, Liquid , Pyrrolidines/chemistry , Benzodioxoles/chemistry
12.
J Pharm Sci ; 112(1): 304-317, 2023 01.
Article in English | MEDLINE | ID: mdl-36306863

ABSTRACT

Formulating poorly soluble molecules as amorphous solid dispersions (ASDs) is an effective strategy to improve drug release. However, drug release rate and extent tend to rapidly diminish with increasing drug loading (DL). The poor release at high DLs has been postulated to be linked to the process of amorphous-amorphous phase separation (AAPS), although the exact connection between phase separation and release properties remains somewhat unclear. Herein, release profiles of ASDs formulated with ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) at different DLs were determined using surface normalized dissolution. Surface morphologies of partially dissolved ASD compacts were evaluated with confocal fluorescence microscopy, using Nile red and Alexa Fluor 488 as fluorescence markers to track the hydrophobic and hydrophilic phases respectively. ASD phase behavior during hydration and release of components were also visualized in real time using a newly developed in situ confocal fluorescence microscopy method. RTV-PVPVA ASDs showed complete and rapid drug release below 30% DL, partial drug release at 30% DL and no drug release above 30% DL. It was observed that formation of discrete drug-rich droplets at lower DLs led to rapid and congruent release of both drug and polymer, whereas formation of continuous drug-rich phase at the ASD matrix-solution interface was the cause of poor release above certain DLs. Thus, the domain size and interconnectivity of phase separated drug-rich domains appear to be critical factors impacting drug release from RTV-PVPVPA ASDs.


Subject(s)
Polymers , Pyrrolidines , Polymers/chemistry , Solubility , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Drug Liberation , Ritonavir/chemistry , Povidone/chemistry
13.
Int J Pharm ; 630: 122455, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36460129

ABSTRACT

Inhibiting surface crystallization is an interesting strategy to enhance the physical stability of amorphous solid dispersions (ASDs), still preserving high drug loads. The aim of this study was to investigate the potential surface crystallization inhibitory effect of an additional polymer coating onto ASDs, comprising high drug loads of a fast crystallizing drug, layered onto pellets. For this purpose, bilayer coated pellets were generated with fluid-bed coating, of which the first layer constitutes a solid dispersion of naproxen (NAP) in poly(vinylpyrrolidone-co-vinyl acetate) (PVP-VA) in a 40:60 or 35:65 (w/w) ratio, and ethyl cellulose (EC) composes the second layer. The physical stability of these double-layered pellets, in comparison to pellets with an ASD layer only, was assessed under accelerated conditions by monitoring with X-ray powder diffraction (XRPD) at regular time intervals. Bilayer coated pellets were however found to be physically less stable than pellets with an ASD layer only. Applying the supplementary EC coating layer induced crystallization and heterogeneity in the 40:60 and 35:65 (w/w) NAP-PVP-VA ASDs, respectively, attributed to the initial contact with the solvent. Caution is thus required when applying an additional coating layer on top of an ASD layer with fluid-bed coating, for instance for controlled release purposes, especially if the ASD consists of high loads of a fast crystallizing drug.


Subject(s)
Polymers , Vinyl Compounds , Polymers/chemistry , Solubility , Vinyl Compounds/chemistry , Pyrrolidines/chemistry , Drug Implants
14.
Eur J Med Chem ; 246: 114954, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36481599

ABSTRACT

Pyrrolidine molecules are a significant class of synthetic and natural plant metabolites, which show the diversity of pharmacological activities. An extensive variety of synthetic pyrrolidine compounds with numerous derivatization like spirooxindole, thiazole, metal complexes, coumarin, etc have revealed significant anticancer activity. Pyrrolidine molecules are found not only as potential anticancer candidates but also retain the lowest side effects. Depending upon the diverse substitution patterns of the derivatives, these molecules have demonstrated an incredible ability to regulate the various targets to give excellent anti-proliferative activities. Taking these into consideration, efforts have been taken by the scientific fraternity to design and develop a potent anticancer scaffold with negligible side effects. In the present review, we cover the latest advancements in the synthesis of pyrrolidine molecules which have promising anticancer activity toward numerous cancer cell lines. Additionally, it also highlights the effectiveness of derivatives via elucidation of Structural-Activity-Relationship (SAR) which is discussed in detail.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/chemistry , Molecular Structure , Neoplasms/drug therapy , Pyrrolidines/chemistry , Structure-Activity Relationship , Thiazoles/chemistry
15.
Molecules ; 27(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364453

ABSTRACT

Sterically shielded nitroxides, which demonstrate high resistance to bioreduction, are the spin labels of choice for structural studies inside living cells using pulsed EPR and functional MRI and EPRI in vivo. To prepare new sterically shielded nitroxides, a reaction of cyclic nitrones, including various 1-pyrroline-1-oxides, 2,5-dihydroimidazole-3-oxide and 4H-imidazole-3-oxide with alkynylmagnesium bromide wereused. The reaction gave corresponding nitroxides with an alkynyl group adjacent to the N-O moiety. The hydrogenation of resulting 2-ethynyl-substituted nitroxides with subsequent re-oxidation of the N-OH group produced the corresponding sterically shielded tetraalkylnitroxides of pyrrolidine, imidazolidine and 2,5-dihydroimidazole series. EPR studies revealed large additional couplings up to 4 G in the spectra of pyrrolidine and imidazolidine nitroxides with substituents in 3- and/or 4-positions of the ring.


Subject(s)
Bromides , Imidazolidines , Cyclic N-Oxides/chemistry , Nitrogen Oxides/chemistry , Spin Labels , Oxides , Pyrrolidines/chemistry , Electron Spin Resonance Spectroscopy/methods
16.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430300

ABSTRACT

Methods for the synthesis of two types of isomeric dispirocompounds based on imidazothiazolotriazine and pyrrolidineoxindole, differing in the structure of imidazothiazolotriazine fragment, namely, linear dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3'-pyrrolidine- 4',3″-indolines] and angular dispiro[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3'-pyrrolidine-4',3″-indolines] were proposed. The first method relies on a 1,3-dipolar cycloaddition of azomethine ylides generated in situ from paraformaldehyde and N-alkylglycine derivatives to the corresponding oxindolylidene derivatives of imidazothiazolotriazine. The cycloaddition leads to a mixture of two diastereomers resulted from anti- and syn-approaches of azomethine ylide in approximately a 1:1 ratio, which were separated by column chromatography. Another method consists in rearrangement of linear dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3'-pyrrolidine-4',3″-indolines] into hitherto unavailable angular dispiro[imidazo[4,5-e]thiazolo[2,3-c]-[1,2,4]triazine-7,3'-pyrrolidine-4',3″-indolines] upon treatment with KOH. It was found that the anti-diastereomer of linear type underwent rearrangement into the isomeric angular syn-diastereomer, while the rearrangement of the linear syn-diastereomer gave the angular anti-diastereomer.


Subject(s)
Spiro Compounds , Thiosemicarbazones , Spiro Compounds/chemistry , Thiosemicarbazones/chemistry , Pyrrolidines/chemistry , Triazines
17.
J Am Chem Soc ; 144(42): 19627-19634, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36254467

ABSTRACT

Asymmetric cycloaddition reactions are the most powerful tool to the expeditious construction of enantioenriched cyclic motifs in organic chemistry. In sharp contrast to well-developed cycloaddition reactions via the palladium-trimethylenemethane (Pd-TMM) intermediate, hetero (3 + 2) cycloadditions of the heteroallyl cations remain rare, largely due to their thermally forbidden nature. To the best of our knowledge, there is no example of asymmetric version leading to enantioenriched heterocycles reported so far. Herein we enabled the first example of catalytic asymmetric (3 + 2) cycloaddition of electrophilic palladium-heteroallyl zwitterion intermediate (Pd-OTMM or Pd-NTMM) with cyclic or acyclic 1,3-dienes via a pathway terminated with C-N or C-O bond formation, delivering the highly substituted or fused pyrrolidine and tetrahydrofuran rings in high yields with excellent regio-, diastereo-, and enantioselectivity. Engineering the PC-Phos, one of the chiral sulfinamide phosphine (Sadphos) type ligands, by introducing the di-tert-butyl or/and 3,5-difluorophenyl group is a vital component in achieving excellent catalytic reactivity and enantioselectivity.


Subject(s)
Palladium , Pyrrolidines , Palladium/chemistry , Cycloaddition Reaction , Stereoisomerism , Pyrrolidines/chemistry , Furans
18.
Bioorg Med Chem Lett ; 75: 128983, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36096342

ABSTRACT

The cyclic structure of proline (Pro) confers unique conformational properties on this natural amino acid that influences polypeptide structure and function. Pseudoprolines are a family of Pro isosteres that incorporate a heteroatom, most prominently oxygen or sulfur but also silicon and selenium, to replace the Cß or Cγ carbon atom of the pyrrolidine ring. These readily synthetically accessible structural motifs can facilitate facile molecular editing in a fashion that allows modulation of the amide bond topology of dipeptide elements and influence over ring pucker. While the properties of pseudoprolines have been exploited most prominently in the design of oligopeptide analogues, they have potential application in the design and optimization of small molecules. In this Digest, we summarize the physicochemical properties of pseudoprolines and illustrate their potential in drug discovery by surveying examples of applications in the design of bioactive molecules.


Subject(s)
Selenium , Silicon , Amides , Carbon , Dipeptides , Oligopeptides/chemistry , Oxygen , Peptides/chemistry , Proline/analogs & derivatives , Proline/chemistry , Pyrrolidines/chemistry , Sulfur , Thiazoles
19.
Chemistry ; 28(54): e202202117, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35938353

ABSTRACT

A scalable and efficient process for the preparation of 3-borylated pyrrolidines by 1,3-dipolar cycloaddition of N-benzyl azomethine ylide generated in situ has been developed. The optimized method included the use of LiF in DMSO at 110 °C and was suitable for α-mono-, α,ß-di-, and α,ß,ß-trialkyl-, ß,ß-(hetera)cycloalkylidene-, CO2 Et-, as well as most ß-(het)aryl-substituted alkenyl boropinacolates. The 1,3-dipolar reaction proceeded on a multigram scale providing 3-borylated pyrrolidines with diverse substitution patterns (including fused and spirocyclic ones) in a diastereoselective manner. The Pd(OH)2 -mediated N-debenzylation of pyrrolidine hydrochlorides was successfully performed to give the corresponding bifunctional building blocks on an up to 130 g scale, thus providing a substantial expansion of the synthetic and medicinal chemist's toolbox. Other reactions included the preparation of trifluoroborates, Zweifel-Aggarwal sp3 -sp2 coupling, and oxidative deborylation as an example of C-heteroatom bond formation.


Subject(s)
Carbon Dioxide , Dimethyl Sulfoxide , Azo Compounds , Cycloaddition Reaction , Pyrrolidines/chemistry , Thiosemicarbazones
20.
Nature ; 608(7922): 390-396, 2022 08.
Article in English | MEDLINE | ID: mdl-35922513

ABSTRACT

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Subject(s)
Anti-Bacterial Agents , Bacteria , Cell Membrane , Depsipeptides , Microbial Viability , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/cytology , Bacteria/drug effects , Cell Membrane/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Depsipeptides/chemistry , Depsipeptides/pharmacology , Diphosphates/chemistry , Drug Resistance, Bacterial/drug effects , Humans , Lipids/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Atomic Force , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Pyrrolidines/chemistry , Sugars/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...